On the best polynomial approximation of $(\psi,\beta)$-differentiable functions in $L_2$ space

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The best uniform polynomial approximation of two classes of rational functions

In this paper we obtain the explicit form of the best uniform polynomial approximations out of Pn of two classes of rational functions using properties of Chebyshev polynomials. In this way we present some new theorems and lemmas. Some examples will be given to support the results.

متن کامل

A method to obtain the best uniform polynomial approximation for the family of rational function

In this article, by using Chebyshev’s polynomials and Chebyshev’s expansion, we obtain the best uniform polynomial approximation out of P2n to a class of rational functions of the form (ax2+c)-1 on any non symmetric interval [d,e]. Using the obtained approximation, we provide the best uniform polynomial approximation to a class of rational functions of the form (ax2+bx+c)-1 for both cases b2-4a...

متن کامل

Best uniform polynomial approximation of some rational functions

This thesis is based on the following paper :Mehdi Dehghan , M.R. Eslahchi, Best uniform polynomialapproximation of some rational functions , Computers andMathematics with Applications ,Best polynomial approximation problem is one of the mostimportant and applicable subjects in the approxi References1. [1] J . C . Mason , D . C . Handscomb , Chebyshevpolynomials ...

متن کامل

Fuzzy Best Simultaneous Approximation of a Finite Numbers of Functions

Fuzzy best simultaneous approximation of a finite number of functions is considered. For this purpose, a fuzzy norm on $Cleft (X, Y right )$ and its fuzzy dual space and also the  set of subgradients of a fuzzy norm are introduced. Necessary case of a proved theorem about characterization of simultaneous approximation will be extended to the fuzzy case.

متن کامل

On Chebyshev Subspaces in the Space of Multivariate Differentiable Functions

In the present paper we give a characterization of Chebyshev subspaces in the space of (real or complex) continuously-differentiable functions of two variables. We also discuss various applications of the characterization theorem. Introduction. One of the central problems in approximation theory consists in determining the best approximation; that is, in a normed linear space X with a prescribe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Researches in Mathematics

سال: 2017

ISSN: 2664-5009,2664-4991

DOI: 10.15421/241701